Blowup-polynomials of graphs

Projesh Nath Choudhury

Indian Institute of Science
(Joint with Apoorva Khare)

E-seminar on Graphs and Matrices
IIT Kharagpur

Distance matrices of graphs

By a graph, we will denote $G=(V, E)$ with $V=\{1, \ldots, k\}$ the nodes, and $E \subset\binom{V}{2}$ the edges. (Finite, simple, unweighted, and connected.)

Distance matrices of graphs

By a graph, we will denote $G=(V, E)$ with $V=\{1, \ldots, k\}$ the nodes, and $E \subset\binom{V}{2}$ the edges. (Finite, simple, unweighted, and connected.)

- Between any two nodes v, w of G, there is a shortest path of integer length $d(v, w) \geqslant 0$ (i.e., $d(v, w)$ edges).
- The distance matrix D_{G} is a $V \times V$ matrix with entries $d(v, w)$.

Distance matrices of graphs

By a graph, we will denote $G=(V, E)$ with $V=\{1, \ldots, k\}$ the nodes, and $E \subset\binom{V}{2}$ the edges. (Finite, simple, unweighted, and connected.)

- Between any two nodes v, w of G, there is a shortest path of integer length $d(v, w) \geqslant 0$ (i.e., $d(v, w)$ edges).
- The distance matrix D_{G} is a $V \times V$ matrix with entries $d(v, w)$.
- Extensively studied quantity: the determinant of D_{G} for G a tree.

Algebraic fact: The Graham-Pollak result

Examples of distance matrices (on 4 nodes):
T_{1}, T_{2} are the star graph $K_{1,3}$ and the path graph P_{4}, respectively.

$$
D_{T_{1}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 \\
1 & 2 & 0 & 2 \\
1 & 2 & 2 & 0
\end{array}\right)
$$

$$
D_{T_{2}}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)
$$

Algebraic fact: The Graham-Pollak result

Examples of distance matrices (on 4 nodes):
T_{1}, T_{2} are the star graph $K_{1,3}$ and the path graph P_{4}, respectively.

$$
D_{T_{1}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 \\
1 & 2 & 0 & 2 \\
1 & 2 & 2 & 0
\end{array}\right)
$$

$$
D_{T_{2}}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)
$$

It turns out that both matrices have the same determinant. Remarkably, this holds for all trees:

Algebraic fact: The Graham-Pollak result

Examples of distance matrices (on 4 nodes):
T_{1}, T_{2} are the star graph $K_{1,3}$ and the path graph P_{4}, respectively.

$$
D_{T_{1}}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 2 & 2 \\
1 & 2 & 0 & 2 \\
1 & 2 & 2 & 0
\end{array}\right)
$$

$$
D_{T_{2}}=\left(\begin{array}{llll}
0 & 1 & 2 & 3 \\
1 & 0 & 1 & 2 \\
2 & 1 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}\right)
$$

It turns out that both matrices have the same determinant.
Remarkably, this holds for all trees:
Theorem (Graham-Pollak, Bell Sys. Tech. J., 1971)
Given a tree T on k nodes, $\quad \operatorname{det} D_{T}=(-1)^{k-1} 2^{k-2}(k-1)$.

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].
Question: Does the characteristic polynomial of D_{G} detect G ?

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].
Question: Does the characteristic polynomial of D_{G} detect G ?
Answer: No - there exist graphs with the same number of vertices, and the same characteristic polynomial for D_{G}, which are not isomorphic. E.g.:

Thus, $\operatorname{det}\left(D_{G}-x \mathrm{Id}_{V}\right)$ does not detect the graph (up to isomorphism).
Inter-related Motivations/Goals:

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].
Question: Does the characteristic polynomial of D_{G} detect G ?
Answer: No - there exist graphs with the same number of vertices, and the same characteristic polynomial for D_{G}, which are not isomorphic. E.g.:

Thus, $\operatorname{det}\left(D_{G}-x \mathrm{Id}_{V}\right)$ does not detect the graph (up to isomorphism).
Inter-related Motivations/Goals:
(1) Find a(nother) family $\left\{G_{i}: i \in I\right\}$ of graphs (e.g., trees on k vertices) such that $i \mapsto \operatorname{det} D_{G_{i}}$ is a "nice" function.
(2) Find an invariant of the matrix D_{G} which detects G (and is related to the distance spectrum - eigenvalues of D_{G}).

Graph blowups

The key construction is of a graph blowup $G[\mathbf{n}]$, where $\mathbf{n}=\left(n_{v}\right)_{v \in V}$ is a V-tuple of positive integers. This is a finite simple connected graph $G[\mathbf{n}]$, with:

- n_{v} copies of the vertex $v \in V$, and
- a copy of vertex v and one of w are adjacent in $G[\mathbf{n}]$ if and only if $v \neq w$ and v, w are adjacent in G.

Example: Path graph $P_{3} \cong P_{2}[(2,1)]$. $a-b-c$
Blowup of an edge $P_{2}=K_{2}$, with $a, c=$ copies of one node.

Graph blowups

The key construction is of a graph blowup $G[\mathbf{n}]$, where $\mathbf{n}=\left(n_{v}\right)_{v \in V}$ is a V-tuple of positive integers. This is a finite simple connected graph $G[\mathbf{n}]$, with:

- n_{v} copies of the vertex $v \in V$, and
- a copy of vertex v and one of w are adjacent in $G[\mathbf{n}]$ if and only if $v \neq w$ and v, w are adjacent in G.

Example: Path graph $P_{3} \cong P_{2}[(2,1)]$. $\quad a-b-c$ Blowup of an edge $P_{2}=K_{2}$, with $a, c=$ copies of one node.

More examples:

Star graph: $K_{1, n} \cong K_{2}[(1, n)]$
4-cycle: $C_{4} \cong K_{2}[(2,2)]$.

Distance matrix of graph blowup, and its determinant

Suggestive example: Compute $\operatorname{det} D_{G[\mathbf{n}]}$ in all examples above:

$$
\operatorname{det} D_{K_{2}[(r, s)]}=(-2)^{r+s-2}(3 r s-4 r-4 s+4) .
$$

Distance matrix of graph blowup, and its determinant

Suggestive example: Compute $\operatorname{det} D_{G[\mathbf{n}]}$ in all examples above:

$$
\operatorname{det} D_{K_{2}[(r, s)]}=(-2)^{r+s-2}(3 r s-4 r-4 s+4)
$$

Contains: (i) an exponential factor in $r+s$, and
(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[\mathbf{n}]}$ for general graphs G ?

Distance matrix of graph blowup, and its determinant

Suggestive example: Compute $\operatorname{det} D_{G[\mathbf{n}]}$ in all examples above:

$$
\operatorname{det} D_{K_{2}[(r, s)]}=(-2)^{r+s-2}(3 r s-4 r-4 s+4) .
$$

Contains: (i) an exponential factor in $r+s$, and
(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[\mathbf{n}]}$ for general graphs G ?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_{G}(\mathbf{n})$ in the sizes n_{v}, such that:

$$
\operatorname{det} D_{G[\mathbf{n}]}=(-2)^{\sum_{v}\left(n_{v}-1\right)} p_{G}(\mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}_{>0}^{V}
$$

Moreover, p_{G} is multi-affine in \mathbf{n}, with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|} \sum_{v \in V} n_{v}$. (In fact, have closed-form expression for every monomial.)

Distance matrix of graph blowup, and its determinant

Suggestive example: Compute $\operatorname{det} D_{G[\mathbf{n}]}$ in all examples above:

$$
\operatorname{det} D_{K_{2}[(r, s)]}=(-2)^{r+s-2}(3 r s-4 r-4 s+4)
$$

Contains: (i) an exponential factor in $r+s$, and
(ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[\mathbf{n}]}$ for general graphs G ?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_{G}(\mathbf{n})$ in the sizes n_{v}, such that:

$$
\operatorname{det} D_{G[\mathbf{n}]}=(-2)^{\sum_{v}\left(n_{v}-1\right)} p_{G}(\mathbf{n}), \quad \mathbf{n} \in \mathbb{Z}_{>0}^{V}
$$

Moreover, p_{G} is multi-affine in \mathbf{n}, with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|} \sum_{v \in V} n_{v}$. (In fact, have closed-form expression for every monomial.)

Definition: Define $p_{G}(\cdot)$ to be the blowup-polynomial of G.

Proof: Zariski density

Define the modified distance matrix $M_{G}:=D_{G}+2 \mathrm{Id}_{V}$, and $\Delta_{\mathrm{n}}:=\operatorname{diag}\left(n_{v}\right)_{v \in V}$. The above proof reveals:

$$
(-2)^{-\sum_{v}\left(n_{v}-1\right)} \cdot \operatorname{det} D_{G[\mathbf{n}]}=p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)
$$

Proof: Zariski density

Define the modified distance matrix $M_{G}:=D_{G}+2 \operatorname{Id}_{V}$, and $\Delta_{\mathbf{n}}:=\operatorname{diag}\left(n_{v}\right)_{v \in V}$. The above proof reveals:

$$
(-2)^{-\sum_{v}\left(n_{v}-1\right)} \cdot \operatorname{det} D_{G[\mathbf{n}]}=p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)
$$

However, the inverse M_{G}^{-1} does get used in our proofs.
So how to assume "in general" that $M_{G}=\left(m_{v w}\right)_{v, w \in V}$ is invertible over \mathbb{R} ?

Proof: Zariski density

Define the modified distance matrix $M_{G}:=D_{G}+2 \operatorname{Id}_{V}$, and $\Delta_{\mathbf{n}}:=\operatorname{diag}\left(n_{v}\right)_{v \in V}$. The above proof reveals:

$$
(-2)^{-\sum_{v}\left(n_{v}-1\right)} \cdot \operatorname{det} D_{G[\mathbf{n}]}=p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)
$$

However, the inverse M_{G}^{-1} does get used in our proofs.
So how to assume "in general" that $M_{G}=\left(m_{v w}\right)_{v, w \in V}$ is invertible over \mathbb{R} ?
Answer: Zariski density. Namely, proceed in four steps:
(1) Work over the field $R_{0}:=\mathbb{Q}\left(\left\{m_{v w}\right\}\right)$. Now $\operatorname{det} M_{G}$ is a nonzero polynomial, hence in $R_{0}^{\times} \rightsquigarrow$ our proof works.

Proof: Zariski density

Define the modified distance matrix $M_{G}:=D_{G}+2 \operatorname{Id}_{V}$, and $\Delta_{\mathbf{n}}:=\operatorname{diag}\left(n_{v}\right)_{v \in V}$. The above proof reveals:

$$
(-2)^{-\sum_{v}\left(n_{v}-1\right)} \cdot \operatorname{det} D_{G[\mathbf{n}]}=p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)
$$

However, the inverse M_{G}^{-1} does get used in our proofs.
So how to assume "in general" that $M_{G}=\left(m_{v w}\right)_{v, w \in V}$ is invertible over \mathbb{R} ?
Answer: Zariski density. Namely, proceed in four steps:
(1) Work over the field $R_{0}:=\mathbb{Q}\left(\left\{m_{v w}\right\}\right)$. Now $\operatorname{det} M_{G}$ is a nonzero polynomial, hence in $R_{0}^{\times} \rightsquigarrow$ our proof works.
(2) Observe that both sides above are polynomials in the variables,

- so their equality in R_{0} holds in the polynomial ring $\mathbb{Q}\left[\left\{m_{v w}\right\}\right]$,
- hence the equality holds in the polynomial function subring $\mathbb{Z}\left[\left\{m_{v w}\right\}\right]$,
- but on the nonzero locus of $P:=\operatorname{det} M_{G}$.

Proof: Zariski density

Define the modified distance matrix $M_{G}:=D_{G}+2 \operatorname{Id}_{V}$, and $\Delta_{\mathbf{n}}:=\operatorname{diag}\left(n_{v}\right)_{v \in V}$. The above proof reveals:

$$
(-2)^{-\sum_{v}\left(n_{v}-1\right)} \cdot \operatorname{det} D_{G[\mathbf{n}]}=p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)
$$

However, the inverse M_{G}^{-1} does get used in our proofs.
So how to assume "in general" that $M_{G}=\left(m_{v w}\right)_{v, w \in V}$ is invertible over \mathbb{R} ?
Answer: Zariski density. Namely, proceed in four steps:
(1) Work over the field $R_{0}:=\mathbb{Q}\left(\left\{m_{v w}\right\}\right)$. Now $\operatorname{det} M_{G}$ is a nonzero polynomial, hence in $R_{0}^{\times} \rightsquigarrow$ our proof works.
(2) Observe that both sides above are polynomials in the variables,

- so their equality in R_{0} holds in the polynomial ring $\mathbb{Q}\left[\left\{m_{v w}\right\}\right]$,
- hence the equality holds in the polynomial function subring $\mathbb{Z}\left[\left\{m_{v w}\right\}\right]$,
- but on the nonzero locus of $P:=\operatorname{det} M_{G}$.
(3) Since P is a nonzero polynomial, its nonzero locus is Zariski dense - so the above equality holds over all values of $m_{v w}$.

Proof: Zariski density

Define the modified distance matrix $M_{G}:=D_{G}+2 \operatorname{Id}_{V}$, and $\Delta_{\mathbf{n}}:=\operatorname{diag}\left(n_{v}\right)_{v \in V}$. The above proof reveals:

$$
(-2)^{-\sum_{v}\left(n_{v}-1\right)} \cdot \operatorname{det} D_{G[\mathbf{n}]}=p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)
$$

However, the inverse M_{G}^{-1} does get used in our proofs.
So how to assume "in general" that $M_{G}=\left(m_{v w}\right)_{v, w \in V}$ is invertible over \mathbb{R} ?
Answer: Zariski density. Namely, proceed in four steps:
(1) Work over the field $R_{0}:=\mathbb{Q}\left(\left\{m_{v w}\right\}\right)$. Now $\operatorname{det} M_{G}$ is a nonzero polynomial, hence in $R_{0}^{\times} \rightsquigarrow$ our proof works.
(2) Observe that both sides above are polynomials in the variables,

- so their equality in R_{0} holds in the polynomial ring $\mathbb{Q}\left[\left\{m_{v w}\right\}\right]$,
- hence the equality holds in the polynomial function subring $\mathbb{Z}\left[\left\{m_{v w}\right\}\right]$,
- but on the nonzero locus of $P:=\operatorname{det} M_{G}$.
(3) Since P is a nonzero polynomial, its nonzero locus is Zariski dense - so the above equality holds over all values of $m_{v w}$.
(4) Finally, specialize from $\mathbb{Z}\left[\left\{m_{v w}\right\}\right]$ to values in arbitrary commutative R - e.g., in \mathbb{R}.

Blowup-polynomials: further properties

(1) $p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)$ is a polynomial in the entries of M_{G} and in the sizes n_{v}. Thus: in the above proof, we also let n_{v} be indeterminates, and work over $\widetilde{R_{0}}:=\mathbb{Q}\left(\left\{m_{v w}, n_{v}\right\}\right)$ (and apply Zariski density).
(2) Thus, we will use n_{v} as both sizes as well as variables.

Blowup-polynomials: further properties

(1) $p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)$ is a polynomial in the entries of M_{G} and in the sizes n_{v}. Thus: in the above proof, we also let n_{v} be indeterminates, and work over $\widetilde{R_{0}}:=\mathbb{Q}\left(\left\{m_{v w}, n_{v}\right\}\right)$ (and apply Zariski density).
(2) Thus, we will use n_{v} as both sizes as well as variables.
(3) $p_{G}(\mathbf{n})$ is a multi-affine polynomial in the sizes n_{v}. E.g., $p_{K_{2}}(r, s)=3 r s-4 r-4 s+4$.

Blowup-polynomials: further properties

(1) $p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)$ is a polynomial in the entries of M_{G} and in the sizes n_{v}. Thus: in the above proof, we also let n_{v} be indeterminates, and work over $\widetilde{R_{0}}:=\mathbb{Q}\left(\left\{m_{v w}, n_{v}\right\}\right)$ (and apply Zariski density).
(2) Thus, we will use n_{v} as both sizes as well as variables.
(3) $p_{G}(\mathbf{n})$ is a multi-affine polynomial in the sizes n_{v}. E.g., $p_{K_{2}}(r, s)=3 r s-4 r-4 s+4$.
(4) The coefficient of every monomial $\prod_{i \in I} n_{i}$ can be computed (with $I \subset V)$. It equals:

$$
(-2)^{|V \backslash I|} \operatorname{det}\left(M_{G}\right)_{I \times I}
$$

where $\left(M_{G}\right)_{I \times I}$ is the principal submatrix of $M_{G}=D_{G}+2 \operatorname{Id}_{V}$, formed by the rows and columns indexed by I.

Blowup-polynomials: further properties

(1) $p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)$ is a polynomial in the entries of M_{G} and in the sizes n_{v}. Thus: in the above proof, we also let n_{v} be indeterminates, and work over $\widetilde{R_{0}}:=\mathbb{Q}\left(\left\{m_{v w}, n_{v}\right\}\right)$ (and apply Zariski density).
(2) Thus, we will use n_{v} as both sizes as well as variables.
(3) $p_{G}(\mathbf{n})$ is a multi-affine polynomial in the sizes n_{v}. E.g., $p_{K_{2}}(r, s)=3 r s-4 r-4 s+4$.
(4) The coefficient of every monomial $\prod_{i \in I} n_{i}$ can be computed (with $I \subset V)$. It equals:

$$
(-2)^{|V \backslash I|} \operatorname{det}\left(M_{G}\right)_{I \times I}
$$

where $\left(M_{G}\right)_{I \times I}$ is the principal submatrix of $M_{G}=D_{G}+2 \operatorname{Id}_{V}$, formed by the rows and columns indexed by I.

This achieves Goal 1: the function $\mathbf{n} \mapsto \operatorname{det} D_{G[\mathbf{n}]}$ is a "nice" function of \mathbf{n}, for all graphs G.

Blowup-polynomials: further properties

(1) $p_{G}(\mathbf{n})=\operatorname{det}\left(\Delta_{\mathbf{n}} M_{G}-2 \operatorname{Id}_{V}\right)$ is a polynomial in the entries of M_{G} and in the sizes n_{v}. Thus: in the above proof, we also let n_{v} be indeterminates, and work over $\widetilde{R_{0}}:=\mathbb{Q}\left(\left\{m_{v w}, n_{v}\right\}\right)$ (and apply Zariski density).
(2) Thus, we will use n_{v} as both sizes as well as variables.
(3) $p_{G}(\mathbf{n})$ is a multi-affine polynomial in the sizes n_{v}. E.g., $p_{K_{2}}(r, s)=3 r s-4 r-4 s+4$.
(4) The coefficient of every monomial $\prod_{i \in I} n_{i}$ can be computed (with $I \subset V)$. It equals:

$$
(-2)^{|V \backslash I|} \operatorname{det}\left(M_{G}\right)_{I \times I}
$$

where $\left(M_{G}\right)_{I \times I}$ is the principal submatrix of $M_{G}=D_{G}+2 \operatorname{Id}_{V}$, formed by the rows and columns indexed by I.

This achieves Goal 1: the function $\mathbf{n} \mapsto \operatorname{det} D_{G[\mathbf{n}]}$ is a "nice" function of \mathbf{n}, for all graphs G.

What about Goal $2-\operatorname{can} p_{G}$ recover G ?

Univariate specialization of p_{G}

Definition: The univariate blowup-polynomial is $u_{G}(n):=p_{G}(n, n, \ldots, n)$.
This is closely related to the characteristic polynomial of D_{G} :

Univariate specialization of p_{G}

Definition: The univariate blowup-polynomial is $u_{G}(n):=p_{G}(n, n, \ldots, n)$.
This is closely related to the characteristic polynomial of D_{G} :

Proposition (C.-Khare, 2021)

A real number n is a root of u_{G} if and only if $n \neq 0$ and $2 n^{-1}-2$ is an eigenvalue of D_{G} (with the same multiplicity).

Univariate specialization of p_{G}

Definition: The univariate blowup-polynomial is $u_{G}(n):=p_{G}(n, n, \ldots, n)$.
This is closely related to the characteristic polynomial of D_{G} :

Proposition (C.-Khare, 2021)

A real number n is a root of u_{G} if and only if $n \neq 0$ and $2 n^{-1}-2$ is an eigenvalue of D_{G} (with the same multiplicity).

In particular, u_{G} also does not recover G :

What about p_{G} - does it recover G ?

p_{G} is a graph invariant

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_{v} \longleftrightarrow n_{w}$.

- Thus, the self-isometries/automorphisms of G determine the symmetries of p_{G}. Does this process work in reverse?

p_{G} is a graph invariant

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_{v} \longleftrightarrow n_{w}$.

- Thus, the self-isometries/automorphisms of G determine the symmetries of p_{G}. Does this process work in reverse?
- More strongly, does p_{G} recover G ?

p_{G} is a graph invariant

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_{v} \longleftrightarrow n_{w}$.

- Thus, the self-isometries/automorphisms of G determine the symmetries of p_{G}. Does this process work in reverse?
- More strongly, does p_{G} recover G ?

Theorem (C.-Khare, 2021)

The symmetries of p_{G} coincide with the self-isometries of G. More strongly, the "purely quadratic" part of p_{G}, i.e. its "Hessian" $\mathcal{H}\left(p_{G}\right)$, recovers G.

p_{G} is a graph invariant

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_{v} \longleftrightarrow n_{w}$.

- Thus, the self-isometries/automorphisms of G determine the symmetries of p_{G}. Does this process work in reverse?
- More strongly, does p_{G} recover G ?

Theorem (C.-Khare, 2021)

The symmetries of p_{G} coincide with the self-isometries of G. More strongly, the "purely quadratic" part of p_{G}, i.e. its "Hessian" $\mathcal{H}\left(p_{G}\right)$, recovers G.

Proof: For all graphs G,
$\mathcal{H}\left(p_{G}\right):=\left(\left(\partial_{n_{v}} \partial_{n_{w}} p_{G}\right)(\mathbf{0})\right)_{v, w \in V}=(-2)^{|V|} \mathbf{1}_{V \times V}-(-2)^{|V|-2}\left(D_{G}+2 \operatorname{Id}_{V}\right)^{\circ 2}$,
where given a matrix $M=\left(m_{v w}\right), M^{\circ 2}:=\left(m_{v w}^{2}\right)$ is its entrywise square.
(Answers Goal 2.)

Real-rootedness of u_{G}

- The polynomial $u_{K_{2}}(n)=3 n^{2}-8 n+4=(n-2)(3 n-2)$, so it is real-rooted.
- One can compute: $u_{K_{k}}(n)=(n-2)^{k-1}(k n+n-2)$ - also real rooted.

Question: Is $u_{G}(n)$ real-rooted for all graphs G ?

Real-rootedness of u_{G}

- The polynomial $u_{K_{2}}(n)=3 n^{2}-8 n+4=(n-2)(3 n-2)$, so it is real-rooted.
- One can compute: $u_{K_{k}}(n)=(n-2)^{k-1}(k n+n-2)$ - also real rooted.

Question: Is $u_{G}(n)$ real-rooted for all graphs G ?
Answer: Yes. In fact, much more is true - and for p_{G} itself:

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $p_{G}(\mathbf{n})$ is real-stable.

Real-rootedness of u_{G}

- The polynomial $u_{K_{2}}(n)=3 n^{2}-8 n+4=(n-2)(3 n-2)$, so it is real-rooted.
- One can compute: $u_{K_{k}}(n)=(n-2)^{k-1}(k n+n-2)$ - also real rooted.

Question: Is $u_{G}(n)$ real-rooted for all graphs G ?
Answer: Yes. In fact, much more is true - and for p_{G} itself:

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $p_{G}(\mathbf{n})$ is real-stable.

Recall: $p(\mathbf{z})$ is real-stable if $p\left(z_{1}, \ldots, z_{k}\right) \neq 0$ whenever $\Im\left(z_{j}\right)>0 \forall j$. (Henceforth, $|V|=k$.)

Real-stability - recent applications

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009. ..]

- Provided far-reaching generalizations of the Laguerre-Pólya-Schur program on entire functions / multipliers / root-location / ...
- Developed a multi-variable Szász principle and multi-dimensional Jensen multipliers.
- Developed a framework incorporating Lee-Yang and Heilman-Lieb type theorems.
- Proved longstanding conjectures of Johnson...

Real-stability - recent applications

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009. ..]

- Provided far-reaching generalizations of the Laguerre-Pólya-Schur program on entire functions / multipliers / root-location / ...
- Developed a multi-variable Szász principle and multi-dimensional Jensen multipliers.
- Developed a framework incorporating Lee-Yang and Heilman-Lieb type theorems.
- Proved longstanding conjectures of Johnson...

Taken forward by Marcus-Spielman-Srivastava:

- Proved the Kadison-Singer conjecture. [Ann. of Math. 2015]
- Existence of bipartite Ramanujan graphs of all degrees and orders proved conjectures of Bilu-Linial and Lubotzky. [Ann. of Math. 2015]

Real-stability of p_{G}

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $\mathbf{z} \mapsto p_{G}(\mathbf{z})$ is real-stable.

Provides novel families of examples of real-stable examples, from graphs and distance matrices.

Real-stability of p_{G}

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $\mathbf{z} \mapsto p_{G}(\mathbf{z})$ is real-stable.

Provides novel families of examples of real-stable examples, from graphs and distance matrices.

The proof uses two ingredients:
(1) A result of Brändén [Adv. in Math. 2007]: if A_{1}, \ldots, A_{k} are positive semidefinite matrices, and B is real symmetric, then the map

$$
\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right) \mapsto \operatorname{det}\left(B+\sum_{j=1}^{k} z_{j} A_{j}\right)
$$

is real-stable.

Real-stability of p_{G}

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $\mathbf{z} \mapsto p_{G}(\mathbf{z})$ is real-stable.

Provides novel families of examples of real-stable examples, from graphs and distance matrices.

The proof uses two ingredients:
(1) A result of Brändén [Adv. in Math. 2007]: if A_{1}, \ldots, A_{k} are positive semidefinite matrices, and B is real symmetric, then the map

$$
\mathbf{z}=\left(z_{1}, \ldots, z_{k}\right) \mapsto \operatorname{det}\left(B+\sum_{j=1}^{k} z_{j} A_{j}\right)
$$

is real-stable.
(2) "Inversion" preserves real-stability: If $g\left(z_{1}, \ldots, z_{k}\right)$ is a polynomial with z_{j}-degree $d_{j} \geq 1$ that is real-stable, then so is $z_{1}^{d_{1}} g\left(-z_{1}^{-1}, z_{2}, \ldots, z_{k}\right)$. (This is because the map $z \mapsto-1 / z$ preserves the upper half-plane.)

Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with $|V|=k$) that $p_{G}(\mathbf{z})$ has constant term $(-2)^{k}$ and linear term $-(-2)^{k} \sum_{j=1}^{k} z_{j}$.

Thus, the real-stable polynomial p_{G} does not satisfy two further properties:
(1) The coefficients are not all of the same sign.
(2) p_{G} is not homogeneous.
[Can consider $p_{G}(-\mathbf{z})$.]
[Can consider $z_{0}^{k} p_{G}\left(z_{0}^{-1} \mathbf{z}\right)$.]

Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with $|V|=k$) that $p_{G}(\mathbf{z})$ has constant term $(-2)^{k}$ and linear term $-(-2)^{k} \sum_{j=1}^{k} z_{j}$.

Thus, the real-stable polynomial p_{G} does not satisfy two further properties:
(1) The coefficients are not all of the same sign.
[Can consider $p_{G}(-\mathbf{z})$.]
(2) p_{G} is not homogeneous.
[Can consider $z_{0}^{k} p_{G}\left(z_{0}^{-1} \mathbf{z}\right)$.]
Stable polynomials with these properties were studied (in broader settings) by:
(1) Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] - strongly Rayleigh distributions/polynomials;
(2) Brändén-Huh [Ann. of Math. 2020] - Lorentzian polynomials.

Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with $|V|=k$) that $p_{G}(\mathbf{z})$ has constant term $(-2)^{k}$ and linear term $-(-2)^{k} \sum_{j=1}^{k} z_{j}$.

Thus, the real-stable polynomial p_{G} does not satisfy two further properties:
(1) The coefficients are not all of the same sign.
[Can consider $p_{G}(-\mathbf{z})$.]
(2) p_{G} is not homogeneous.
[Can consider $z_{0}^{k} p_{G}\left(z_{0}^{-1} \mathbf{z}\right)$.]
Stable polynomials with these properties were studied (in broader settings) by:
(1) Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] - strongly Rayleigh distributions/polynomials;
(2) Brändén-Huh [Ann. of Math. 2020] - Lorentzian polynomials.

Question: If we homogenize p_{G} at -1 , for which graphs G does this yield a real-stable / Lorentzian polynomial? Or, when are all coefficients of the same sign?

Beyond real-stability: Lorenztian / strongly Rayleigh

Recall from above (with $|V|=k$) that $p_{G}(\mathbf{z})$ has constant term $(-2)^{k}$ and linear term $-(-2)^{k} \sum_{j=1}^{k} z_{j}$.

Thus, the real-stable polynomial p_{G} does not satisfy two further properties:
(1) The coefficients are not all of the same sign.
(2) p_{G} is not homogeneous.
[Can consider $p_{G}(-\mathbf{z})$.]
[Can consider $z_{0}^{k} p_{G}\left(z_{0}^{-1} \mathbf{z}\right)$.]

Stable polynomials with these properties were studied (in broader settings) by:
(1) Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] - strongly Rayleigh distributions/polynomials;
(2) Brändén-Huh [Ann. of Math. 2020] - Lorentzian polynomials.

Question: If we homogenize p_{G} at -1 , for which graphs G does this yield a real-stable / Lorentzian polynomial? Or, when are all coefficients of the same sign?

Our next result characterizes the graphs for which this holds.
Remarkably - if and only if all coefficients have same sign (strongly Rayleigh)!

Strongly Rayleigh graphs are complete multi-partite

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$
\tilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right):=\left(-z_{0}\right)^{k} p_{G}\left(\frac{z_{1}}{-z_{0}}, \ldots, \frac{z_{k}}{-z_{0}}\right) \in \mathbb{R}\left[z_{0}, z_{1}, \ldots, z_{k}\right]
$$

The following are equivalent:

Strongly Rayleigh graphs are complete multi-partite

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$
\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right):=\left(-z_{0}\right)^{k} p_{G}\left(\frac{z_{1}}{-z_{0}}, \ldots, \frac{z_{k}}{-z_{0}}\right) \in \mathbb{R}\left[z_{0}, z_{1}, \ldots, z_{k}\right]
$$

The following are equivalent:
(1) The homogenized polynomial $\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ is real-stable.
(2) $\widetilde{p}_{G}(\cdot)$ has all coefficients non-negative (i.e., of the monomials $\left.z_{0}^{k-|J|} \prod_{j \in J} z_{j}\right)$.

Strongly Rayleigh graphs are complete multi-partite

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$
\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right):=\left(-z_{0}\right)^{k} p_{G}\left(\frac{z_{1}}{-z_{0}}, \ldots, \frac{z_{k}}{-z_{0}}\right) \in \mathbb{R}\left[z_{0}, z_{1}, \ldots, z_{k}\right]
$$

The following are equivalent:
(1) The homogenized polynomial $\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ is real-stable.
(2) $\widetilde{p}_{G}(\cdot)$ has all coefficients non-negative (i.e., of the monomials $\left.z_{0}^{k-|J|} \prod_{j \in J} z_{j}\right)$.
(3) $(-1)^{k} p_{G}(-1, \ldots,-1)>0$, and the normalized "reflected" polynomial

$$
q_{G}:\left(z_{1}, \ldots, z_{k}\right) \quad \mapsto \quad \frac{p_{G}\left(-z_{1}, \ldots,-z_{k}\right)}{p_{G}(-1, \ldots,-1)}
$$

is strongly Rayleigh, i.e., q_{G} is real-stable, has non-negative coefficients (of all monomials $\prod_{j \in J} z_{j}$), and these sum up to 1 .

Strongly Rayleigh graphs are complete multi-partite

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$
\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right):=\left(-z_{0}\right)^{k} p_{G}\left(\frac{z_{1}}{-z_{0}}, \ldots, \frac{z_{k}}{-z_{0}}\right) \in \mathbb{R}\left[z_{0}, z_{1}, \ldots, z_{k}\right]
$$

The following are equivalent:
(1) The homogenized polynomial $\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ is real-stable.
(2) $\widetilde{p}_{G}(\cdot)$ has all coefficients non-negative (i.e., of the monomials $\left.z_{0}^{k-|J|} \prod_{j \in J} z_{j}\right)$.
(3) $(-1)^{k} p_{G}(-1, \ldots,-1)>0$, and the normalized "reflected" polynomial

$$
q_{G}:\left(z_{1}, \ldots, z_{k}\right) \quad \mapsto \quad \frac{p_{G}\left(-z_{1}, \ldots,-z_{k}\right)}{p_{G}(-1, \ldots,-1)}
$$

is strongly Rayleigh, i.e., q_{G} is real-stable, has non-negative coefficients (of all monomials $\prod_{j \in J} z_{j}$), and these sum up to 1 .
(4) The graph G is a blowup of a complete graph - that is, G is a complete multipartite graph.

Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in terms of real-stability - of the homogenized polynomial

$$
\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right):=\left(-z_{0}\right)^{k} p_{G}\left(\frac{z_{1}}{-z_{0}}, \ldots, \frac{z_{k}}{-z_{0}}\right) \in \mathbb{R}\left[z_{0}, z_{1}, \ldots, z_{k}\right]
$$

Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in terms of real-stability - of the homogenized polynomial

$$
\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right):=\left(-z_{0}\right)^{k} p_{G}\left(\frac{z_{1}}{-z_{0}}, \ldots, \frac{z_{k}}{-z_{0}}\right) \in \mathbb{R}\left[z_{0}, z_{1}, \ldots, z_{k}\right]
$$

Further equivalent conditions:

Theorem (C.-Khare, 2021)

A graph G is complete multi-partite if and only if any of the following holds:
(5) The matrix $M_{G}=D_{G}+2 \operatorname{Id}_{k}$ is positive semidefinite.
(6) The polynomial $\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ is Lorentzian. (Brändén-Huh, 2020)
(7) The polynomial $\tilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ is strongly log-concave. (Gurvits, 2009)
(8) The polynomial $\widetilde{p}_{G}\left(z_{0}, z_{1}, \ldots, z_{k}\right)$ is completely log-concave. (Anari-Oveis Gharan-Vinzant, 2018)

Blowup-polynomials of metric spaces

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) - can be defined in greater generality: for all finite metric spaces.

Blowup-polynomials of metric spaces

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) - can be defined in greater generality: for all finite metric spaces.
- All of our theorems above for finite connected graphs, in fact hold for all finite metric spaces - except for the theorem on recovering G from p_{G}, or its isometries from the symmetries of p_{G}.
- A partial extension in this direction:

Blowup-polynomials of metric spaces

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) - can be defined in greater generality: for all finite metric spaces.
- All of our theorems above for finite connected graphs, in fact hold for all finite metric spaces - except for the theorem on recovering G from p_{G}, or its isometries from the symmetries of p_{G}.
- A partial extension in this direction:

The blowup-polynomial is symmetric in all n_{v}, if and only if G is complete.
This fact generalizes to:

Blowup-polynomials of metric spaces

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) - can be defined in greater generality: for all finite metric spaces.
- All of our theorems above for finite connected graphs, in fact hold for all finite metric spaces - except for the theorem on recovering G from p_{G}, or its isometries from the symmetries of p_{G}.
- A partial extension in this direction:

The blowup-polynomial is symmetric in all n_{v}, if and only if G is complete.
This fact generalizes to:

Proposition (C.-Khare, 2021)

For a finite metric space X, with distance matrix D_{X}, the blowup-polynomial $p_{X}(\mathbf{n})$ is symmetric in the variables $\left\{n_{x}: x \in X\right\}$, if and only if (X, d) is discrete up to scaling. That is, there exists $c>0$ such that $d(x, y)=c$ if $x \neq y \in X$, and 0 otherwise.

Matroids

A matroid is a notion common to linear algebra and graph theory (among other areas):
(1) A finite set E (called the ground set);
(2) A nonempty family of subsets $\mathcal{F} \subset 2^{E}$ called the independent sets closed under taking subsets + under "exchange axiom".

Matroids

A matroid is a notion common to linear algebra and graph theory (among other areas):
(1) A finite set E (called the ground set);
(2) A nonempty family of subsets $\mathcal{F} \subset 2^{E}$ called the independent sets closed under taking subsets + under "exchange axiom".

Examples:

(1) Free matroid: All subsets of E.
(2) Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).

Matroids

A matroid is a notion common to linear algebra and graph theory (among other areas):
(1) A finite set E (called the ground set);
(2) A nonempty family of subsets $\mathcal{F} \subset 2^{E}$ called the independent sets closed under taking subsets + under "exchange axiom".

Examples:

(1) Free matroid: All subsets of E.
(2) Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).
(3) $E=$ finite subset of vector space; $\mathcal{F}=$ linearly independent subsets of E. (E.g., Linear matroid: E indexes the columns of a matrix A over a field.)

Matroids

A matroid is a notion common to linear algebra and graph theory (among other areas):
(1) A finite set E (called the ground set);
(2) A nonempty family of subsets $\mathcal{F} \subset 2^{E}$ called the independent sets closed under taking subsets + under "exchange axiom".

Examples:

(1) Free matroid: All subsets of E.
(2) Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).
(3) $E=$ finite subset of vector space; $\mathcal{F}=$ linearly independent subsets of E. (E.g., Linear matroid: E indexes the columns of a matrix A over a field.)
(4) Graphic matroid \mathcal{F}_{G} : Let $G=(V, E)$ be a graph. Now \mathcal{F}_{G} includes those ("independent") sets $F \subset E$ which do not contain a cycle.

Delta-matroids

A related well-studied notion is that of a delta-matroid.
Example 1: Restrict to the bases of $\operatorname{Col}(A)$, not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

$$
A, B \in \mathcal{F}, x \in A \Delta B \quad \Longrightarrow \quad \text { there exists } y \in A \Delta B \text { s.t. } A \Delta\{x, y\} \in \mathcal{F}
$$

Delta-matroids

A related well-studied notion is that of a delta-matroid.
Example 1: Restrict to the bases of $\operatorname{Col}(A)$, not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

$$
A, B \in \mathcal{F}, x \in A \Delta B \quad \Longrightarrow \quad \text { there exists } y \in A \Delta B \text { s.t. } A \Delta\{x, y\} \in \mathcal{F}
$$

In general, a delta-matroid consists of:
(1) A finite ground set E;
(2) A nonempty family of subsets $\mathcal{F} \subset 2^{E}$ called the feasible sets - closed under the Symmetric Exchange Axiom.

Delta-matroids

A related well-studied notion is that of a delta-matroid.
Example 1: Restrict to the bases of $\operatorname{Col}(A)$, not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

$$
A, B \in \mathcal{F}, x \in A \Delta B \quad \Longrightarrow \quad \text { there exists } y \in A \Delta B \text { s.t. } A \Delta\{x, y\} \in \mathcal{F}
$$

In general, a delta-matroid consists of:
(1) A finite ground set E;
(2) A nonempty family of subsets $\mathcal{F} \subset 2^{E}$ called the feasible sets - closed under the Symmetric Exchange Axiom.

Example 2: Linear delta-matroid - given a symmetric or skew-symmetric matrix $A_{n \times n}$ over a field, let $E:=\{1, \ldots, n\}$.
A subset $F \subset E$ is feasible $\Longleftrightarrow \operatorname{det} A_{F \times F} \neq 0$.
The set of feasible subsets is the linear delta-matroid, denoted by \mathcal{M}_{A}.

From blowup-polynomials to blowup delta-matroids

Brändén (Adv. Math. 2007) showed: if $p\left(z_{1}, \ldots, z_{k}\right)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_{G}(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid.

From blowup-polynomials to blowup delta-matroids

Brändén (Adv. Math. 2007) showed: if $p\left(z_{1}, \ldots, z_{k}\right)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_{G}(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid. In fact, this delta-matroid is linear: $\mathcal{M}_{M_{G}}$.

Example: For $G=P_{3}$ (path graph), with $E=\{1,2,3\}$,

$$
\mathcal{M}_{M_{P_{3}}}=2^{E} \backslash\{\{1,3\},\{1,2,3\}\}
$$

From blowup-polynomials to blowup delta-matroids

Brändén (Adv. Math. 2007) showed: if $p\left(z_{1}, \ldots, z_{k}\right)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_{G}(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid. In fact, this delta-matroid is linear: $\mathcal{M}_{M_{G}}$.

Example: For $G=P_{3}$ (path graph), with $E=\{1,2,3\}$,

$$
\mathcal{M}_{M_{P_{3}}}=2^{E} \backslash\{\{1,3\},\{1,2,3\}\} .
$$

More generally, for P_{k} for small k, with $E_{k}=\{1, \ldots, k\}$,

$$
\mathcal{M}_{M_{P_{k}}}=2^{E_{k}} \backslash\{\{i, i+2\},\{i, i+1, i+2\}: 1 \leq i \leq k-2\} .
$$

From blowup-polynomials to blowup delta-matroids

Brändén (Adv. Math. 2007) showed: if $p\left(z_{1}, \ldots, z_{k}\right)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E=\{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_{G}(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid. In fact, this delta-matroid is linear: $\mathcal{M}_{M_{G}}$.

Example: For $G=P_{3}$ (path graph), with $E=\{1,2,3\}$,

$$
\mathcal{M}_{M_{P_{3}}}=2^{E} \backslash\{\{1,3\},\{1,2,3\}\} .
$$

More generally, for P_{k} for small k, with $E_{k}=\{1, \ldots, k\}$,

$$
\mathcal{M}_{M_{P_{k}}}=2^{E_{k}} \backslash\{\{i, i+2\},\{i, i+1, i+2\}: 1 \leq i \leq k-2\} .
$$

Questions:

(1) Does this hold for all k ?
(2) Regardless of (1), is the right-hand side a delta-matroid for all k ?

Another delta-matroid for trees

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals $\mathcal{M}_{P_{k}}$ if and only if $k \leq 8$.

Another delta-matroid for trees

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals $\mathcal{M}_{P_{k}}$ if and only if $k \leq 8$.

The second part is because $\operatorname{det} M_{P_{9}}=0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_{k}}$.
In particular, for $k \geq 9$, the right-hand side yields a different novel delta-matroid for P_{k}. How to generalize this phenomenon?

Another delta-matroid for trees

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals $\mathcal{M}_{P_{k}}$ if and only if $k \leq 8$.

The second part is because $\operatorname{det} M_{P_{9}}=0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_{k}}$.
In particular, for $k \geq 9$, the right-hand side yields a different novel delta-matroid for P_{k}. How to generalize this phenomenon?

Note that the induced subgraph in P_{k} on $I:=\{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_{3}=K_{2}[(2,1)]$, and $i, i+2$ are copies of a vertex in K_{2}. Hence $\left(M_{P_{3}}\right)_{I \times I}$ has two identical rows and columns, so $\operatorname{det}\left(M_{P_{3}}\right)_{I \times I}=0$.

Another delta-matroid for trees

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals $\mathcal{M}_{P_{k}}$ if and only if $k \leq 8$.

The second part is because $\operatorname{det} M_{P_{9}}=0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_{k}}$.
In particular, for $k \geq 9$, the right-hand side yields a different novel delta-matroid for P_{k}. How to generalize this phenomenon?

Note that the induced subgraph in P_{k} on $I:=\{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_{3}=K_{2}[(2,1)]$, and $i, i+2$ are copies of a vertex in K_{2}. Hence $\left(M_{P_{3}}\right)_{I \times I}$ has two identical rows and columns, so $\operatorname{det}\left(M_{P_{3}}\right)_{I \times I}=0$.

This holds in full generality:

Proposition (C.-Khare, 2021)

Suppose G, H are graphs and $\mathbf{n} \in \mathbb{Z}_{>0}^{V_{G}}$ is a tuple, such that the blowup $G[\mathbf{n}]$ is an induced subgraph of H.

Another delta-matroid for trees

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals $\mathcal{M}_{P_{k}}$ if and only if $k \leq 8$.

The second part is because $\operatorname{det} M_{P_{9}}=0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_{k}}$.
In particular, for $k \geq 9$, the right-hand side yields a different novel delta-matroid for P_{k}. How to generalize this phenomenon?

Note that the induced subgraph in P_{k} on $I:=\{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_{3}=K_{2}[(2,1)]$, and $i, i+2$ are copies of a vertex in K_{2}. Hence $\left(M_{P_{3}}\right)_{I \times I}$ has two identical rows and columns, so $\operatorname{det}\left(M_{P_{3}}\right)_{I \times I}=0$.

This holds in full generality:

Proposition (C.-Khare, 2021)

Suppose G, H are graphs and $\mathbf{n} \in \mathbb{Z}_{>0}^{V_{G}}$ is a tuple, such that the blowup $G[\mathbf{n}]$ is an induced subgraph of H. If some $n_{v} \geq 2$, and $v_{1}, v_{2} \in G[\mathbf{n}]$ are copies of v, and $\left\{v_{1}, v_{2}\right\} \subset I \subset V(G[\mathbf{n}])$, then the coefficient of $\prod_{i \in I} n_{i}$ in $p_{H}(\cdot)$ is zero.

Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on vertices $I \subset V(G)$ with the same parent, then $\operatorname{det}\left(M_{G}\right)_{I \times I}=0$. Is the converse true - i.e., does setting all such I as the infeasible subsets yield a delta-matroid? (Notice, this recovers the "right-hand" delta-matroid for P_{k} for all k.)

Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on vertices $I \subset V(G)$ with the same parent, then $\operatorname{det}\left(M_{G}\right)_{I \times I}=0$. Is the converse true - i.e., does setting all such I as the infeasible subsets yield a delta-matroid? (Notice, this recovers the "right-hand" delta-matroid for P_{k} for all k.)

Answer: Yes:

Theorem (C.-Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner tree $T(I)$ has two leaves, which are in I and have the same parent. Then the remaining, "feasible" subsets form a delta-matroid $\mathcal{M}^{\prime}(T)$.

Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on vertices $I \subset V(G)$ with the same parent, then $\operatorname{det}\left(M_{G}\right)_{I \times I}=0$. Is the converse true - i.e., does setting all such I as the infeasible subsets yield a delta-matroid? (Notice, this recovers the "right-hand" delta-matroid for P_{k} for all k.)

Answer: Yes:

Theorem (C.-Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner tree $T(I)$ has two leaves, which are in I and have the same parent. Then the remaining, "feasible" subsets form a delta-matroid $\mathcal{M}^{\prime}(T)$.

- Note that $\mathcal{M}^{\prime}\left(P_{k}\right) \supsetneq \mathcal{M}_{M_{P_{k}}}$ for $k \geq 9$.
- We also show that the construction of $\mathcal{M}^{\prime}(T)$ does not extend to arbitrary graphs.

References

[1] P.N. Choudhury and A. Khare.
The blowup-polynomial of a metric space: connections to stable polynomials, graphs and their distance spectra.
Preprint, arXiv:2105.12111, 2021.

Thanks are owed to:
MATRICS Grant, SERB, India
Ramanujan Fellowship, SERB, India
University Grants Commission, India
National Post-doctoral Fellowship, SERB, India
SwarnaJayanti Fellowship, DST and SERB, India

