Blowup-polynomials of graphs

Projesh Nath Choudhury Indian Institute of Science

(Joint with Apoorva Khare)

E-seminar on Graphs and Matrices IIT Kharagpur

Distance matrices of graphs

By a graph, we will denote G = (V, E) with $V = \{1, ..., k\}$ the nodes, and $E \subset {V \choose 2}$ the edges. (Finite, simple, unweighted, and connected.)

Distance matrices of graphs

By a graph, we will denote G = (V, E) with $V = \{1, ..., k\}$ the nodes, and $E \subset {V \choose 2}$ the edges. (Finite, simple, unweighted, and connected.)

- Between any two nodes v, w of G, there is a shortest path of integer length $d(v, w) \ge 0$ (i.e., d(v, w) edges).
- The distance matrix D_G is a $V \times V$ matrix with entries d(v, w).

Distance matrices of graphs

By a graph, we will denote G = (V, E) with $V = \{1, ..., k\}$ the nodes, and $E \subset {V \choose 2}$ the edges. (Finite, simple, unweighted, and connected.)

- Between any two nodes v, w of G, there is a shortest path of integer length d(v, w) ≥ 0 (i.e., d(v, w) edges).
- The distance matrix D_G is a $V \times V$ matrix with entries d(v, w).
- Extensively studied quantity: the determinant of D_G for G a tree.

Algebraic fact: The Graham–Pollak result

Examples of distance matrices (on 4 nodes): T_1, T_2 are the star graph $K_{1,3}$ and the path graph P_4 , respectively.

Algebraic fact: The Graham–Pollak result

Examples of distance matrices (on 4 nodes): T_1, T_2 are the star graph $K_{1,3}$ and the path graph P_4 , respectively.

It turns out that both matrices have the same determinant. Remarkably, this holds for all trees:

Algebraic fact: The Graham–Pollak result

Examples of distance matrices (on 4 nodes): T_1, T_2 are the star graph $K_{1,3}$ and the path graph P_4 , respectively.

It turns out that both matrices have the same determinant. Remarkably, this holds for all trees:

Theorem (Graham–Pollak, Bell Sys. Tech. J., 1971)

Given a tree T on k nodes, $\det D_T = (-1)^{k-1} 2^{k-2} (k-1).$

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of D_G detect G?

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of D_G detect G?

Answer: No – there exist graphs with the same number of vertices, and the same characteristic polynomial for D_G , which are **not** isomorphic. E.g.:

Thus, $det(D_G - x \operatorname{Id}_V)$ does not detect the graph (up to isomorphism).

Inter-related Motivations/Goals:

Analysis fact: co-spectral matrices

Also studied by Graham, with Lovász in [Adv. in Math. 1978].

Question: Does the characteristic polynomial of D_G detect G?

Answer: No – there exist graphs with the same number of vertices, and the same characteristic polynomial for D_G , which are **not** isomorphic. E.g.:

Thus, $det(D_G - x \operatorname{Id}_V)$ does not detect the graph (up to isomorphism).

Inter-related Motivations/Goals:

Sind a(nother) family {G_i : i ∈ I} of graphs (e.g., trees on k vertices) such that i → det D_{Gi} is a "nice" function.

Find an invariant of the matrix D_G which detects G (and is related to the distance spectrum – eigenvalues of D_G).

Projesh Nath Choudhury, IISc Bangalore

Graph blowups

The key construction is of a graph blowup $G[\mathbf{n}]$, where $\mathbf{n} = (n_v)_{v \in V}$ is a *V*-tuple of positive integers. This is a finite simple connected graph $G[\mathbf{n}]$, with:

- n_v copies of the vertex $v \in V$, and
- a copy of vertex v and one of w are adjacent in $G[\mathbf{n}]$ if and only if $v \neq w$ and v, w are adjacent in G.

Example: Path graph $P_3 \cong P_2[(2,1)]$. $a \longrightarrow b \longrightarrow c$ Blowup of an edge $P_2 = K_2$, with a, c = copies of one node.

Graph blowups

The key construction is of a graph blowup $G[\mathbf{n}]$, where $\mathbf{n} = (n_v)_{v \in V}$ is a *V*-tuple of positive integers. This is a finite simple connected graph $G[\mathbf{n}]$, with:

- n_v copies of the vertex $v \in V$, and
- a copy of vertex v and one of w are adjacent in $G[\mathbf{n}]$ if and only if $v \neq w$ and v, w are adjacent in G.

Example: Path graph $P_3 \cong P_2[(2,1)]$. $a \longrightarrow c$ Blowup of an edge $P_2 = K_2$, with a, c = copies of one node.

More examples:

Star graph: $K_{1,n} \cong K_2[(1,n)]$

4-cycle: $C_4 \cong K_2[(2,2)].$

Suggestive example: Compute $\det D_{G[n]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Suggestive example: Compute $\det D_{G[n]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and (ii) a polynomial in the *sizes* r, s.

Question: What is the determinant of $D_{G[\mathbf{n}]}$ for general graphs G?

Suggestive example: Compute $\det D_{G[n]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and (ii) a polynomial in the *sizes* r, s.

Question: What is the determinant of $D_{G[\mathbf{n}]}$ for general graphs G?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_G(\mathbf{n})$ in the sizes n_v , such that:

$$\det D_{G[\mathbf{n}]} = (-2)^{\sum_{v} (n_v - 1)} p_G(\mathbf{n}), \qquad \mathbf{n} \in \mathbb{Z}_{>0}^V.$$

Moreover, p_G is multi-affine in n, with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|}\sum_{v\in V} n_v$. (In fact, have closed-form expression for every monomial.)

Suggestive example: Compute $\det D_{G[n]}$ in all examples above:

$$\det D_{K_2[(r,s)]} = (-2)^{r+s-2}(3rs - 4r - 4s + 4).$$

Contains: (i) an exponential factor in r + s, and (ii) a polynomial in the sizes r, s.

Question: What is the determinant of $D_{G[n]}$ for general graphs G?

Theorem (C.-Khare, 2021)

There exists a real polynomial $p_G(\mathbf{n})$ in the sizes n_v , such that:

$$\det D_{G[\mathbf{n}]} = (-2)^{\sum_v (n_v - 1)} p_G(\mathbf{n}), \qquad \mathbf{n} \in \mathbb{Z}_{>0}^V.$$

Moreover, p_G is multi-affine in n, with constant term $(-2)^{|V|}$ and linear term $-(-2)^{|V|}\sum_{v\in V} n_v$. (In fact, have closed-form expression for every monomial.)

Definition: Define $p_G(\cdot)$ to be the *blowup-polynomial* of G.

Projesh Nath Choudhury, IISc Bangalore

Define the modified distance matrix $M_G := D_G + 2 \operatorname{Id}_V$, and $\Delta_n := \operatorname{diag}(n_v)_{v \in V}$. The above proof reveals:

$$(-2)^{-\sum_{v}(n_{v}-1)} \cdot \det D_{G[\mathbf{n}]} = p_{G}(\mathbf{n}) = \det(\Delta_{\mathbf{n}}M_{G} - 2\operatorname{Id}_{V}).$$

Define the *modified distance matrix* $M_G := D_G + 2 \operatorname{Id}_V$, and $\Delta_n := \operatorname{diag}(n_v)_{v \in V}$. The above proof reveals:

$$(-2)^{-\sum_{v}(n_v-1)} \cdot \det D_{G[\mathbf{n}]} = p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}} M_G - 2 \operatorname{Id}_V).$$

However, the inverse M_G^{-1} does get used in our *proofs*. So how to assume "in general" that $M_G = (m_{vw})_{v,w \in V}$ is invertible over \mathbb{R} ?

Define the *modified distance matrix* $M_G := D_G + 2 \operatorname{Id}_V$, and $\Delta_n := \operatorname{diag}(n_v)_{v \in V}$. The above proof reveals:

$$(-2)^{-\sum_{v}(n_v-1)} \cdot \det D_{G[\mathbf{n}]} = p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}} M_G - 2 \operatorname{Id}_V).$$

However, the inverse M_G^{-1} does get used in our *proofs*. So how to assume "in general" that $M_G = (m_{vw})_{v,w \in V}$ is invertible over \mathbb{R} ?

Answer: Zariski density. Namely, proceed in four steps:

() Work over the field $R_0 := \mathbb{Q}(\{m_{vw}\})$. Now det M_G is a nonzero polynomial, hence in $R_0^{\times} \to$ our proof works.

Define the *modified distance matrix* $M_G := D_G + 2 \operatorname{Id}_V$, and $\Delta_n := \operatorname{diag}(n_v)_{v \in V}$. The above proof reveals:

$$(-2)^{-\sum_{v}(n_v-1)} \cdot \det D_{G[\mathbf{n}]} = p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}} M_G - 2 \operatorname{Id}_V).$$

However, the inverse M_G^{-1} does get used in our *proofs*. So how to assume "in general" that $M_G = (m_{vw})_{v,w \in V}$ is invertible over \mathbb{R} ?

Answer: Zariski density. Namely, proceed in four steps:

() Work over the field $R_0 := \mathbb{Q}(\{m_{vw}\})$. Now det M_G is a nonzero polynomial, hence in $R_0^{\times} \to$ our proof works.

2 Observe that both sides above are *polynomials* in the variables,

- so their equality in R_0 holds in the polynomial ring $\mathbb{Q}[\{m_{vw}\}]$,
- hence the equality holds in the polynomial function subring $\mathbb{Z}[\{m_{vw}\}]$,
- but on the nonzero locus of $P := \det M_G$.

Define the *modified distance matrix* $M_G := D_G + 2 \operatorname{Id}_V$, and $\Delta_n := \operatorname{diag}(n_v)_{v \in V}$. The above proof reveals:

$$(-2)^{-\sum_{v}(n_v-1)} \cdot \det D_{G[\mathbf{n}]} = p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}} M_G - 2 \operatorname{Id}_V).$$

However, the inverse M_G^{-1} does get used in our *proofs*. So how to assume "in general" that $M_G = (m_{vw})_{v,w \in V}$ is invertible over \mathbb{R} ?

Answer: Zariski density. Namely, proceed in four steps:

() Work over the field $R_0 := \mathbb{Q}(\{m_{vw}\})$. Now det M_G is a nonzero polynomial, hence in $R_0^{\times} \to$ our proof works.

2 Observe that both sides above are *polynomials* in the variables,

- so their equality in R_0 holds in the polynomial ring $\mathbb{Q}[\{m_{vw}\}]$,

- hence the equality holds in the polynomial function subring $\mathbb{Z}[\{m_{vw}\}]$,
- but on the nonzero locus of $P := \det M_G$.
- **3** Since P is a nonzero polynomial, its nonzero locus is Zariski dense so the above equality holds over all values of m_{vw} .

Define the *modified distance matrix* $M_G := D_G + 2 \operatorname{Id}_V$, and $\Delta_n := \operatorname{diag}(n_v)_{v \in V}$. The above proof reveals:

$$(-2)^{-\sum_{v}(n_v-1)} \cdot \det D_{G[\mathbf{n}]} = p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}} M_G - 2 \operatorname{Id}_V).$$

However, the inverse M_G^{-1} does get used in our *proofs*. So how to assume "in general" that $M_G = (m_{vw})_{v,w \in V}$ is invertible over \mathbb{R} ?

Answer: Zariski density. Namely, proceed in four steps:

() Work over the field $R_0 := \mathbb{Q}(\{m_{vw}\})$. Now det M_G is a nonzero polynomial, hence in $R_0^{\times} \to$ our proof works.

2 Observe that both sides above are *polynomials* in the variables,

- so their equality in R_0 holds in the polynomial ring $\mathbb{Q}[\{m_{vw}\}]$,

- hence the equality holds in the polynomial function subring $\mathbb{Z}[\{m_{vw}\}]$,
- but on the nonzero locus of $P := \det M_G$.
- Since P is a nonzero polynomial, its nonzero locus is Zariski dense so the above equality holds over all values of m_{vw}.
- **③** Finally, specialize from $\mathbb{Z}[\{m_{vw}\}]$ to values in arbitrary commutative R e.g., in \mathbb{R} .

- $p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}}M_G 2\operatorname{Id}_V)$ is a polynomial in the entries of M_G and in the sizes n_v . Thus: in the above proof, we also let n_v be indeterminates, and work over $\widetilde{R_0} := \mathbb{Q}(\{m_{vw}, n_v\})$ (and apply Zariski density).
- 2 Thus, we will use n_v as both sizes as well as variables.

- $p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}}M_G 2\operatorname{Id}_V)$ is a polynomial in the entries of M_G and in the sizes n_v . Thus: in the above proof, we also let n_v be indeterminates, and work over $\widetilde{R_0} := \mathbb{Q}(\{m_{vw}, n_v\})$ (and apply Zariski density).
- 2 Thus, we will use n_v as both sizes as well as variables.
- \$p_G(n)\$ is a multi-affine polynomial in the sizes \$n_v\$.
 E.g., \$p_{K_2}(r,s) = 3rs 4r 4s + 4\$.

- $p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}}M_G 2\operatorname{Id}_V)$ is a polynomial in the entries of M_G and in the sizes n_v . Thus: in the above proof, we also let n_v be indeterminates, and work over $\widetilde{R_0} := \mathbb{Q}(\{m_{vw}, n_v\})$ (and apply Zariski density).
- 2 Thus, we will use n_v as both sizes as well as variables.
- \$p_G(n)\$ is a multi-affine polynomial in the sizes \$n_v\$.
 E.g., \$p_{K_2}(r,s) = 3rs 4r 4s + 4\$.
- ④ The coefficient of every monomial ∏_{i∈I} n_i can be computed (with I ⊂ V). It equals:

$$(-2)^{|V\setminus I|} \det(M_G)_{I\times I},$$

where $(M_G)_{I \times I}$ is the principal submatrix of $M_G = D_G + 2 \operatorname{Id}_V$, formed by the rows and columns indexed by I.

- $p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}}M_G 2\operatorname{Id}_V)$ is a polynomial in the entries of M_G and in the sizes n_v . Thus: in the above proof, we also let n_v be indeterminates, and work over $\widetilde{R_0} := \mathbb{Q}(\{m_{vw}, n_v\})$ (and apply Zariski density).
- 2 Thus, we will use n_v as both sizes as well as variables.
- \$p_G(n)\$ is a multi-affine polynomial in the sizes \$n_v\$.
 E.g., \$p_{K_2}(r,s) = 3rs 4r 4s + 4\$.
- ④ The coefficient of every monomial ∏_{i∈I} n_i can be computed (with I ⊂ V). It equals:

$$(-2)^{|V\setminus I|} \det(M_G)_{I\times I},$$

where $(M_G)_{I \times I}$ is the principal submatrix of $M_G = D_G + 2 \operatorname{Id}_V$, formed by the rows and columns indexed by I.

This achieves Goal 1: the function $\mathbf{n} \mapsto \det D_{G[\mathbf{n}]}$ is a "nice" function of \mathbf{n} , for all graphs G.

- $p_G(\mathbf{n}) = \det(\Delta_{\mathbf{n}}M_G 2\operatorname{Id}_V)$ is a polynomial in the entries of M_G and in the sizes n_v . Thus: in the above proof, we also let n_v be indeterminates, and work over $\widetilde{R_0} := \mathbb{Q}(\{m_{vw}, n_v\})$ (and apply Zariski density).
- 2 Thus, we will use n_v as both sizes as well as variables.
- \$p_G(n)\$ is a multi-affine polynomial in the sizes \$n_v\$.
 E.g., \$p_{K_2}(r,s) = 3rs 4r 4s + 4\$.
- ④ The coefficient of every monomial ∏_{i∈I} n_i can be computed (with I ⊂ V). It equals:

$$(-2)^{|V\setminus I|} \det(M_G)_{I\times I},$$

where $(M_G)_{I \times I}$ is the principal submatrix of $M_G = D_G + 2 \operatorname{Id}_V$, formed by the rows and columns indexed by I.

This achieves Goal 1: the function $\mathbf{n} \mapsto \det D_{G[\mathbf{n}]}$ is a "nice" function of \mathbf{n} , for all graphs G. What about Goal 2 - can p_G recover G?

Univariate specialization of p_G

Definition: The univariate blowup-polynomial is $u_G(n) := p_G(n, n, ..., n)$.

This is closely related to the characteristic polynomial of D_G :

Univariate specialization of p_G

Definition: The univariate blowup-polynomial is $u_G(n) := p_G(n, n, ..., n)$.

This is closely related to the characteristic polynomial of D_G :

Proposition (C.-Khare, 2021)

A real number n is a root of u_G if and only if $n \neq 0$ and $2n^{-1} - 2$ is an eigenvalue of D_G (with the same multiplicity).

Univariate specialization of p_G

Definition: The univariate blowup-polynomial is $u_G(n) := p_G(n, n, ..., n)$.

This is closely related to the characteristic polynomial of D_G :

Proposition (C.–Khare, 2021)

A real number n is a root of u_G if and only if $n \neq 0$ and $2n^{-1} - 2$ is an eigenvalue of D_G (with the same multiplicity).

In particular, u_G also does not recover G:

What about p_G – does it recover G?

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \leftrightarrow n_w$.

• Thus, the self-isometries/automorphisms of *G* determine the *symmetries* of *p_G*. Does this process work in reverse?

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \leftrightarrow n_w$.

- Thus, the self-isometries/automorphisms of *G* determine the *symmetries* of *p_G*. Does this process work in reverse?
- More strongly, does p_G recover G?

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \leftrightarrow n_w$.

- Thus, the self-isometries/automorphisms of *G* determine the *symmetries* of *p_G*. Does this process work in reverse?
- More strongly, does p_G recover G?

Theorem (C.–Khare, 2021)

The symmetries of p_G coincide with the self-isometries of G. More strongly, the "purely quadratic" part of p_G , i.e. its "Hessian" $\mathcal{H}(p_G)$, recovers G.

Note: If G has an automorphism sending a vertex $v \in V$ to w, then the blowup-polynomial is "symmetric" under $n_v \leftrightarrow n_w$.

- Thus, the self-isometries/automorphisms of *G* determine the *symmetries* of *p_G*. Does this process work in reverse?
- More strongly, does p_G recover G?

Theorem (C.–Khare, 2021)

The symmetries of p_G coincide with the self-isometries of G. More strongly, the "purely quadratic" part of p_G , i.e. its "Hessian" $\mathcal{H}(p_G)$, recovers G.

Proof: For all graphs G,

$$\mathcal{H}(p_G) := ((\partial_{n_v} \partial_{n_w} p_G)(\mathbf{0}))_{v,w \in V} = (-2)^{|V|} \mathbf{1}_{V \times V} - (-2)^{|V|-2} (D_G + 2 \operatorname{Id}_V)^{\circ 2},$$

where given a matrix $M = (m_{vw}), M^{\circ 2} := (m_{vw}^2)$ is its entrywise square.

(Answers Goal 2.)

Real-rootedness of u_G

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$, so it is real-rooted.
- One can compute: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

Question: Is $u_G(n)$ real-rooted for all graphs G?

Real-rootedness of u_G

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$, so it is real-rooted.
- One can compute: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

Question: Is $u_G(n)$ real-rooted for all graphs *G*? Answer: Yes. In fact, much more is true – and for p_G itself:

Theorem (C.–Khare, 2021)

For all graphs G, the polynomial $p_G(\mathbf{n})$ is real-stable.
Real-rootedness of u_G

- The polynomial $u_{K_2}(n) = 3n^2 8n + 4 = (n-2)(3n-2)$, so it is real-rooted.
- One can compute: $u_{K_k}(n) = (n-2)^{k-1}(kn+n-2)$ also real rooted.

Question: Is $u_G(n)$ real-rooted for all graphs G? Answer: Yes. In fact, much more is true – and for p_G itself:

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $p_G(\mathbf{n})$ is real-stable.

Recall: $p(\mathbf{z})$ is real-stable if $p(z_1, \ldots, z_k) \neq 0$ whenever $\Im(z_j) > 0 \ \forall j$. (Henceforth, |V| = k.)

Real-stability – recent applications

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009...]

- Provided far-reaching generalizations of the Laguerre–Pólya–Schur program on entire functions / multipliers / root-location / ...
- Developed a multi-variable Szász principle and multi-dimensional Jensen multipliers.
- Developed a framework incorporating Lee–Yang and Heilman–Lieb type theorems.
- Proved longstanding conjectures of Johnson...

Real-stability – recent applications

Borcea and Brändén [Duke 2008, Ann. of Math. 2009, Invent. Math. 2009...]

- Provided far-reaching generalizations of the Laguerre–Pólya–Schur program on entire functions / multipliers / root-location / ...
- Developed a multi-variable Szász principle and multi-dimensional Jensen multipliers.
- Developed a framework incorporating Lee–Yang and Heilman–Lieb type theorems.
- Proved longstanding conjectures of Johnson...

Taken forward by Marcus-Spielman-Srivastava:

- Proved the Kadison-Singer conjecture. [Ann. of Math. 2015]
- Existence of bipartite Ramanujan graphs of all degrees and orders proved conjectures of Bilu–Linial and Lubotzky. [Ann. of Math. 2015]

Real-stability of p_G

Theorem (C.–Khare, 2021)

For all graphs G, the polynomial $\mathbf{z} \mapsto p_G(\mathbf{z})$ is real-stable.

Provides novel families of examples of real-stable examples, from graphs and distance matrices.

Real-stability of p_G

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $\mathbf{z} \mapsto p_G(\mathbf{z})$ is real-stable.

Provides novel families of examples of real-stable examples, from graphs and distance matrices.

The proof uses two ingredients:

• A result of Brändén [*Adv. in Math.* 2007]: if A_1, \ldots, A_k are positive semidefinite matrices, and *B* is real symmetric, then the map

$$\mathbf{z} = (z_1, \dots, z_k) \mapsto \det \left(B + \sum_{j=1}^k z_j A_j \right)$$

is real-stable.

Real-stability of p_G

Theorem (C.-Khare, 2021)

For all graphs G, the polynomial $\mathbf{z} \mapsto p_G(\mathbf{z})$ is real-stable.

Provides novel families of examples of real-stable examples, from graphs and distance matrices.

The proof uses two ingredients:

• A result of Brändén [Adv. in Math. 2007]: if A_1, \ldots, A_k are positive semidefinite matrices, and B is real symmetric, then the map

$$\mathbf{z} = (z_1, \dots, z_k) \mapsto \det \left(B + \sum_{j=1}^k z_j A_j \right)$$

is real-stable.

"Inversion" preserves real-stability: If g(z₁,..., z_k) is a polynomial with z_j-degree d_j ≥ 1 that is real-stable, then so is z₁^{d1}g(-z₁⁻¹, z₂,..., z_k). (This is because the map z → -1/z preserves the upper half-plane.)

Recall from above (with |V| = k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k \sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

The coefficients are not all of the same sign. [Can consider $p_G(-\mathbf{z})$.]

2 p_G is not homogeneous.

[Can consider $z_0^k p_G(z_0^{-1}\mathbf{z})$.]

Recall from above (with |V| = k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k \sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

- The coefficients are not all of the same sign. [Can consider $p_G(-\mathbf{z})$.]
- 2 p_G is not homogeneous. [Can consider $z_0^k p_G(z_0^{-1}\mathbf{z})$.]

Stable polynomials with these properties were studied (in broader settings) by:

- Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] strongly Rayleigh distributions/polynomials;
- Prändén-Huh [Ann. of Math. 2020] Lorentzian polynomials.

Recall from above (with |V| = k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k \sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

The coefficients are not all of the same sign. [Can consider p_G(-z).]
 p_G is not homogeneous. [Can consider z^k₀p_G(z⁻¹₀z).]

Stable polynomials with these properties were studied (in broader settings) by:

- Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] strongly Rayleigh distributions/polynomials;
- Brändén-Huh [Ann. of Math. 2020] Lorentzian polynomials.

Question: If we homogenize p_G at -1, for which graphs G does this yield a real-stable / Lorentzian polynomial? Or, when are all coefficients of the same sign?

Recall from above (with |V| = k) that $p_G(\mathbf{z})$ has constant term $(-2)^k$ and linear term $-(-2)^k \sum_{j=1}^k z_j$.

Thus, the real-stable polynomial p_G does not satisfy two further properties:

The coefficients are not all of the same sign. [Can consider p_G(-z).]
 p_G is not homogeneous. [Can consider z^k₀p_G(z⁻¹₀z).]

Stable polynomials with these properties were studied (in broader settings) by:

- Borcea-Brändén-Liggett [J. Amer. Math. Soc. 2009] strongly Rayleigh distributions/polynomials;
- Brändén-Huh [Ann. of Math. 2020] Lorentzian polynomials.

Question: If we homogenize p_G at -1, for which graphs G does this yield a real-stable / Lorentzian polynomial? Or, when are all coefficients of the same sign?

Our next result characterizes the graphs for which this holds. Remarkably – if and only if all coefficients have same sign (strongly Rayleigh)!

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

Theorem (C.-Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

- **1** The homogenized polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is real-stable.
- 2 $\widetilde{p}_G(\cdot)$ has all coefficients non-negative (i.e., of the monomials $z_0^{k-|J|} \prod_{j \in J} z_j$).

Theorem (C.–Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

- **1** The homogenized polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is real-stable.
- **2** $\widetilde{p}_G(\cdot)$ has all coefficients non-negative (i.e., of the monomials $z_0^{k-|J|} \prod_{j \in J} z_j$).
- 3 $(-1)^k p_G(-1,...,-1) > 0$, and the normalized "reflected" polynomial

$$q_G:(z_1,\ldots,z_k) \quad \mapsto \quad \frac{p_G(-z_1,\ldots,-z_k)}{p_G(-1,\ldots,-1)}$$

is strongly Rayleigh, i.e., q_G is real-stable, has non-negative coefficients (of all monomials $\prod_{i \in J} z_i$), and these sum up to 1.

Theorem (C.–Khare, 2021)

Given a graph G as above, define its homogenized blowup-polynomial

$$\widetilde{p}_G(z_0, z_1, \dots, z_k) := (-z_0)^k p_G\left(\frac{z_1}{-z_0}, \dots, \frac{z_k}{-z_0}\right) \in \mathbb{R}[z_0, z_1, \dots, z_k].$$

The following are equivalent:

- **1** The homogenized polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is real-stable.
- **2** $\widetilde{p}_G(\cdot)$ has all coefficients non-negative (i.e., of the monomials $z_0^{k-|J|} \prod_{j \in J} z_j$).
- 3 $(-1)^k p_G(-1,...,-1) > 0$, and the normalized "reflected" polynomial

$$q_G:(z_1,\ldots,z_k) \quad \mapsto \quad \frac{p_G(-z_1,\ldots,-z_k)}{p_G(-1,\ldots,-1)}$$

is strongly Rayleigh, i.e., q_G is real-stable, has non-negative coefficients (of all monomials $\prod_{i \in J} z_i$), and these sum up to 1.

The graph G is a blowup of a complete graph – that is, G is a complete multipartite graph.

Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in terms of real-stability – of the homogenized polynomial

$$\widetilde{p}_G(z_0,z_1,\ldots,z_k):= \left(-z_0
ight)^k p_G\left(rac{z_1}{-z_0},\ldots,rac{z_k}{-z_0}
ight)\in \mathbb{R}[z_0,z_1,\ldots,z_k].$$

Lorentzian graphs are also complete multi-partite!

This provides a novel characterization of complete multi-partite graphs, in terms of real-stability – of the homogenized polynomial

$$\widetilde{p}_G(z_0,z_1,\ldots,z_k):=\left(-z_0
ight)^kp_G\left(rac{z_1}{-z_0},\ldots,rac{z_k}{-z_0}
ight)\in\mathbb{R}[z_0,z_1,\ldots,z_k].$$

Further equivalent conditions:

Theorem (C.-Khare, 2021)

A graph G is complete multi-partite if and only if any of the following holds:

- **5** The matrix $M_G = D_G + 2 \operatorname{Id}_k$ is positive semidefinite.
- **5** The polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is Lorentzian. (Brändén–Huh, 2020)
- **7** The polynomial $\widetilde{p}_G(z_0, z_1, \ldots, z_k)$ is strongly log-concave. (Gurvits, 2009)
- **3** The polynomial $\tilde{p}_G(z_0, z_1, \dots, z_k)$ is completely log-concave. (Anari–Oveis Gharan–Vinzant, 2018)

• The graph blowup and blowup-polynomial (defined above for finite connected graphs) – can be defined in greater generality: for all finite metric spaces.

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) can be defined in greater generality: for all finite metric spaces.
- All of our theorems above for finite connected graphs, in fact hold for all finite metric spaces except for the theorem on recovering G from p_G , or its isometries from the symmetries of p_G .
- A partial extension in this direction:

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) can be defined in greater generality: for all finite metric spaces.
- All of our theorems above for finite connected graphs, in fact hold for all finite metric spaces except for the theorem on recovering G from p_G , or its isometries from the symmetries of p_G .
- A partial extension in this direction:

The blowup-polynomial is symmetric in all n_v , if and only if G is complete.

This fact generalizes to:

- The graph blowup and blowup-polynomial (defined above for finite connected graphs) can be defined in greater generality: for all finite metric spaces.
- All of our theorems above for finite connected graphs, in fact hold for all finite metric spaces except for the theorem on recovering G from p_G , or its isometries from the symmetries of p_G .
- A partial extension in this direction:

The blowup-polynomial is symmetric in all n_v , if and only if G is complete.

This fact generalizes to:

Proposition (C.-Khare, 2021)

For a finite metric space X, with distance matrix D_X , the blowup-polynomial $p_X(\mathbf{n})$ is symmetric in the variables $\{n_x : x \in X\}$, if and only if (X, d) is discrete up to scaling. That is, there exists c > 0 such that d(x, y) = c if $x \neq y \in X$, and 0 otherwise.

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- A finite set E (called the ground set);
- ② A nonempty family of subsets *F* ⊂ 2^E called the *independent* sets closed under taking subsets + under "exchange axiom".

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- A finite set E (called the ground set);
- ② A nonempty family of subsets *F* ⊂ 2^E called the *independent* sets closed under taking subsets + under "exchange axiom".

Examples:

- **1** Free matroid: All subsets of E.
- 2 Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- A finite set E (called the ground set);
- ② A nonempty family of subsets *F* ⊂ 2^E called the *independent* sets closed under taking subsets + under "exchange axiom".

Examples:

- **1** Free matroid: All subsets of E.
- 2 Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).
- E = finite subset of vector space; F = linearly independent subsets of E.
 (E.g., Linear matroid: E indexes the columns of a matrix A over a field.)

A *matroid* is a notion common to linear algebra and graph theory (among other areas):

- A finite set E (called the ground set);
- ② A nonempty family of subsets *F* ⊂ 2^E called the *independent* sets closed under taking subsets + under "exchange axiom".

Examples:

- **1** Free matroid: All subsets of E.
- 2 Uniform matroid: All subsets of E of size $\leq k$ (for fixed k).
- E = finite subset of vector space; F = linearly independent subsets of E.
 (E.g., Linear matroid: E indexes the columns of a matrix A over a field.)
- **③** Graphic matroid \mathcal{F}_G : Let G = (V, E) be a graph. Now \mathcal{F}_G includes those ("independent") sets $F \subset E$ which do not contain a cycle.

Delta-matroids

A related well-studied notion is that of a *delta-matroid*.

Example 1: Restrict to the *bases* of Col(A), not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

 $A, B \in \mathcal{F}, x \in A \Delta B \implies \text{there exists } y \in A \Delta B \text{ s.t. } A \Delta \{x, y\} \in \mathcal{F}.$

Delta-matroids

A related well-studied notion is that of a *delta-matroid*.

Example 1: Restrict to the *bases* of Col(A), not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

 $A, B \in \mathcal{F}, x \in A \Delta B \implies \text{there exists } y \in A \Delta B \text{ s.t. } A \Delta \{x, y\} \in \mathcal{F}.$

In general, a delta-matroid consists of:

- **1** A finite ground set E;
- ② A nonempty family of subsets *F* ⊂ 2^E called the *feasible* sets closed under the Symmetric Exchange Axiom.

Delta-matroids

A related well-studied notion is that of a *delta-matroid*.

Example 1: Restrict to the *bases* of Col(A), not all linearly independent subsets. These satisfy the "Symmetric Exchange Axiom":

 $A, B \in \mathcal{F}, x \in A \Delta B \implies \text{there exists } y \in A \Delta B \text{ s.t. } A \Delta \{x, y\} \in \mathcal{F}.$

In general, a delta-matroid consists of:

- **1** A finite ground set E;
- A nonempty family of subsets *F* ⊂ 2^E called the *feasible* sets closed under the Symmetric Exchange Axiom.

Example 2: Linear delta-matroid – given a symmetric or skew-symmetric matrix $A_{n \times n}$ over a field, let $E := \{1, \ldots, n\}$. A subset $F \subset E$ is *feasible* $\iff \det A_{F \times F} \neq 0$. The set of feasible subsets is the linear delta-matroid, denoted by \mathcal{M}_A .

Brändén (*Adv. Math.* 2007) showed: if $p(z_1, \ldots, z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E = \{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid.

Brändén (*Adv. Math.* 2007) showed: if $p(z_1, \ldots, z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E = \{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid. In fact, this delta-matroid is linear: \mathcal{M}_{M_G} .

Example: For $G = P_3$ (path graph), with $E = \{1, 2, 3\}$,

$$\mathcal{M}_{M_{P_3}} = 2^E \setminus \{\{1,3\}, \{1,2,3\}\}.$$

Brändén (*Adv. Math.* 2007) showed: if $p(z_1, \ldots, z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E = \{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid. In fact, this delta-matroid is linear: \mathcal{M}_{M_G} .

Example: For $G = P_3$ (path graph), with $E = \{1, 2, 3\}$,

$$\mathcal{M}_{M_{P_3}} = 2^E \setminus \{\{1,3\}, \{1,2,3\}\}.$$

More generally, for P_k for small k, with $E_k = \{1, \ldots, k\}$,

$$\mathcal{M}_{M_{P_k}} = 2^{E_k} \setminus \{\{i, i+2\}, \{i, i+1, i+2\} : 1 \le i \le k-2\}.$$

Brändén (*Adv. Math.* 2007) showed: if $p(z_1, \ldots, z_k)$ is a real-stable multi-affine polynomial, then the set of monomials in p forms a delta-matroid with ground set $E = \{1, \ldots, k\}$.

Thus, every blowup-polynomial $p_G(\cdot)$ is real-stable \rightsquigarrow (novel) delta-matroid. In fact, this delta-matroid is linear: \mathcal{M}_{M_G} .

Example: For $G = P_3$ (path graph), with $E = \{1, 2, 3\}$,

$$\mathcal{M}_{M_{P_3}} = 2^E \setminus \{\{1,3\}, \{1,2,3\}\}.$$

More generally, for P_k for small k, with $E_k = \{1, \ldots, k\}$,

$$\mathcal{M}_{M_{P_k}} = 2^{E_k} \setminus \{\{i, i+2\}, \{i, i+1, i+2\} : 1 \le i \le k-2\}.$$

Questions:

- **1** Does this hold for all k?
- 2 Regardless of (1), is the right-hand side a delta-matroid for all k?

.

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals \mathcal{M}_{P_k} if and only if $k \leq 8$.

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals \mathcal{M}_{P_k} if and only if $k \leq 8$.

The second part is because det $M_{P_9} = 0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_k}$.

In particular, for $k \ge 9$, the right-hand side yields a different novel delta-matroid for P_k . How to generalize this phenomenon?

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals \mathcal{M}_{P_k} if and only if $k \leq 8$.

The second part is because det $M_{P_9} = 0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_k}$.

In particular, for $k \ge 9$, the right-hand side yields a different novel delta-matroid for P_k . How to generalize this phenomenon?

Note that the induced subgraph in P_k on $I := \{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_3 = K_2[(2, 1)]$, and i, i+2 are copies of a vertex in K_2 . Hence $(M_{P_3})_{I \times I}$ has two identical rows and columns, so $\det(M_{P_3})_{I \times I} = 0$.

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals \mathcal{M}_{P_k} if and only if $k \leq 8$.

The second part is because det $M_{P_9} = 0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_k}$.

In particular, for $k \ge 9$, the right-hand side yields a different novel delta-matroid for P_k . How to generalize this phenomenon?

Note that the induced subgraph in P_k on $I := \{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_3 = K_2[(2, 1)]$, and i, i+2 are copies of a vertex in K_2 . Hence $(M_{P_3})_{I \times I}$ has two identical rows and columns, so $\det(M_{P_3})_{I \times I} = 0$.

This holds in full generality:

Proposition (C.-Khare, 2021)

Suppose G, H are graphs and $\mathbf{n} \in \mathbb{Z}_{>0}^{V_G}$ is a tuple, such that the blowup $G[\mathbf{n}]$ is an induced subgraph of H.

Proposition (C.-Khare, 2021)

The right-hand side is a delta-matroid for every k, and it equals \mathcal{M}_{P_k} if and only if $k \leq 8$.

The second part is because det $M_{P_9} = 0$, so $\{1, \ldots, 9\} \notin \mathcal{M}_{P_k}$.

In particular, for $k \ge 9$, the right-hand side yields a different novel delta-matroid for P_k . How to generalize this phenomenon?

Note that the induced subgraph in P_k on $I := \{i, i+1, i+2\}$ is a tree which is a blowup-graph: $P_3 = K_2[(2, 1)]$, and i, i+2 are copies of a vertex in K_2 . Hence $(M_{P_3})_{I \times I}$ has two identical rows and columns, so $\det(M_{P_3})_{I \times I} = 0$.

This holds in full generality:

Proposition (C.-Khare, 2021)

Suppose G, H are graphs and $\mathbf{n} \in \mathbb{Z}_{>0}^{V_G}$ is a tuple, such that the blowup $G[\mathbf{n}]$ is an induced subgraph of H. If some $n_v \ge 2$, and $v_1, v_2 \in G[\mathbf{n}]$ are copies of v, and $\{v_1, v_2\} \subset I \subset V(G[\mathbf{n}])$, then the coefficient of $\prod_{i \in I} n_i$ in $p_H(\cdot)$ is zero.
Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on vertices $I \subset V(G)$ with the same parent, then $\det(M_G)_{I \times I} = 0$. Is the converse true – i.e., does setting all such I as the *infeasible* subsets yield a delta-matroid? (Notice, this recovers the "right-hand" delta-matroid for P_k for all k.)

Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on vertices $I \subset V(G)$ with the same parent, then $\det(M_G)_{I \times I} = 0$. Is the converse true – i.e., does setting all such I as the *infeasible* subsets yield a delta-matroid? (Notice, this recovers the "right-hand" delta-matroid for P_k for all k.)

Answer: Yes:

Theorem (C.-Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner tree T(I) has two leaves, which are in I and have the same parent. Then the remaining, "feasible" subsets form a delta-matroid $\mathcal{M}'(T)$.

Another delta-matroid for trees (cont.)

Thus, if e.g. G is a tree, and two vertices are leaves in any sub-tree of G on vertices $I \subset V(G)$ with the same parent, then $\det(M_G)_{I \times I} = 0$. Is the converse true – i.e., does setting all such I as the *infeasible* subsets yield a delta-matroid? (Notice, this recovers the "right-hand" delta-matroid for P_k for all k.)

Answer: Yes:

Theorem (C.–Khare, 2021)

Suppose T is a tree. Define a subset of vertices I to be infeasible if its Steiner tree T(I) has two leaves, which are in I and have the same parent. Then the remaining, "feasible" subsets form a delta-matroid $\mathcal{M}'(T)$.

- Note that $\mathcal{M}'(P_k) \supseteq \mathcal{M}_{M_{P_k}}$ for $k \ge 9$.
- We also show that the construction of $\mathcal{M}'(T)$ does *not* extend to arbitrary graphs.

References

[1] P.N. Choudhury and A. Khare.

The blowup-polynomial of a metric space: connections to stable polynomials, graphs and their distance spectra.

Preprint, arXiv:2105.12111, 2021.

Thanks are owed to:

- MATRICS Grant, SERB, India •
- Ramanujan Fellowship, SERB, India •
- University Grants Commission, India •
- National Post-doctoral Fellowship, SERB, India •
- SwarnaJayanti Fellowship, DST and SERB, India •